1003 lines
24 KiB
Go
1003 lines
24 KiB
Go
// Code generated by go generate gen_inflate.go. DO NOT EDIT.
|
|
|
|
package flate
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"fmt"
|
|
"math/bits"
|
|
"strings"
|
|
)
|
|
|
|
// Decode a single Huffman block from f.
|
|
// hl and hd are the Huffman states for the lit/length values
|
|
// and the distance values, respectively. If hd == nil, using the
|
|
// fixed distance encoding associated with fixed Huffman blocks.
|
|
func (f *decompressor) huffmanBytesBuffer() {
|
|
const (
|
|
stateInit = iota // Zero value must be stateInit
|
|
stateDict
|
|
)
|
|
fr := f.r.(*bytes.Buffer)
|
|
|
|
switch f.stepState {
|
|
case stateInit:
|
|
goto readLiteral
|
|
case stateDict:
|
|
goto copyHistory
|
|
}
|
|
|
|
readLiteral:
|
|
// Read literal and/or (length, distance) according to RFC section 3.2.3.
|
|
{
|
|
var v int
|
|
{
|
|
// Inlined v, err := f.huffSym(f.hl)
|
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
|
|
// with single element, huffSym must error on these two edge cases. In both
|
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it
|
|
// satisfy the n == 0 check below.
|
|
n := uint(f.hl.maxRead)
|
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
|
|
// but is smart enough to keep local variables in registers, so use nb and b,
|
|
// inline call to moreBits and reassign b,nb back to f on return.
|
|
nb, b := f.nb, f.b
|
|
for {
|
|
for nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
f.b = b
|
|
f.nb = nb
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
f.roffset++
|
|
b |= uint32(c) << (nb & regSizeMaskUint32)
|
|
nb += 8
|
|
}
|
|
chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
|
|
n = uint(chunk & huffmanCountMask)
|
|
if n > huffmanChunkBits {
|
|
chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
|
|
n = uint(chunk & huffmanCountMask)
|
|
}
|
|
if n <= nb {
|
|
if n == 0 {
|
|
f.b = b
|
|
f.nb = nb
|
|
if debugDecode {
|
|
fmt.Println("huffsym: n==0")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
f.b = b >> (n & regSizeMaskUint32)
|
|
f.nb = nb - n
|
|
v = int(chunk >> huffmanValueShift)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
var length int
|
|
switch {
|
|
case v < 256:
|
|
f.dict.writeByte(byte(v))
|
|
if f.dict.availWrite() == 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.step = (*decompressor).huffmanBytesBuffer
|
|
f.stepState = stateInit
|
|
return
|
|
}
|
|
goto readLiteral
|
|
case v == 256:
|
|
f.finishBlock()
|
|
return
|
|
// otherwise, reference to older data
|
|
case v < 265:
|
|
length = v - (257 - 3)
|
|
case v < maxNumLit:
|
|
val := decCodeToLen[(v - 257)]
|
|
length = int(val.length) + 3
|
|
n := uint(val.extra)
|
|
for f.nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits n>0:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
length += int(f.b & uint32(1<<(n®SizeMaskUint32)-1))
|
|
f.b >>= n & regSizeMaskUint32
|
|
f.nb -= n
|
|
default:
|
|
if debugDecode {
|
|
fmt.Println(v, ">= maxNumLit")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
var dist uint32
|
|
if f.hd == nil {
|
|
for f.nb < 5 {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits f.nb<5:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
dist = uint32(bits.Reverse8(uint8(f.b & 0x1F << 3)))
|
|
f.b >>= 5
|
|
f.nb -= 5
|
|
} else {
|
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
|
|
// with single element, huffSym must error on these two edge cases. In both
|
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it
|
|
// satisfy the n == 0 check below.
|
|
n := uint(f.hd.maxRead)
|
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
|
|
// but is smart enough to keep local variables in registers, so use nb and b,
|
|
// inline call to moreBits and reassign b,nb back to f on return.
|
|
nb, b := f.nb, f.b
|
|
for {
|
|
for nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
f.b = b
|
|
f.nb = nb
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
f.roffset++
|
|
b |= uint32(c) << (nb & regSizeMaskUint32)
|
|
nb += 8
|
|
}
|
|
chunk := f.hd.chunks[b&(huffmanNumChunks-1)]
|
|
n = uint(chunk & huffmanCountMask)
|
|
if n > huffmanChunkBits {
|
|
chunk = f.hd.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hd.linkMask]
|
|
n = uint(chunk & huffmanCountMask)
|
|
}
|
|
if n <= nb {
|
|
if n == 0 {
|
|
f.b = b
|
|
f.nb = nb
|
|
if debugDecode {
|
|
fmt.Println("huffsym: n==0")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
f.b = b >> (n & regSizeMaskUint32)
|
|
f.nb = nb - n
|
|
dist = uint32(chunk >> huffmanValueShift)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
switch {
|
|
case dist < 4:
|
|
dist++
|
|
case dist < maxNumDist:
|
|
nb := uint(dist-2) >> 1
|
|
// have 1 bit in bottom of dist, need nb more.
|
|
extra := (dist & 1) << (nb & regSizeMaskUint32)
|
|
for f.nb < nb {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits f.nb<nb:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
extra |= f.b & uint32(1<<(nb®SizeMaskUint32)-1)
|
|
f.b >>= nb & regSizeMaskUint32
|
|
f.nb -= nb
|
|
dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra
|
|
default:
|
|
if debugDecode {
|
|
fmt.Println("dist too big:", dist, maxNumDist)
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
// No check on length; encoding can be prescient.
|
|
if dist > uint32(f.dict.histSize()) {
|
|
if debugDecode {
|
|
fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
f.copyLen, f.copyDist = length, int(dist)
|
|
goto copyHistory
|
|
}
|
|
|
|
copyHistory:
|
|
// Perform a backwards copy according to RFC section 3.2.3.
|
|
{
|
|
cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
|
|
if cnt == 0 {
|
|
cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
|
|
}
|
|
f.copyLen -= cnt
|
|
|
|
if f.dict.availWrite() == 0 || f.copyLen > 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.step = (*decompressor).huffmanBytesBuffer // We need to continue this work
|
|
f.stepState = stateDict
|
|
return
|
|
}
|
|
goto readLiteral
|
|
}
|
|
}
|
|
|
|
// Decode a single Huffman block from f.
|
|
// hl and hd are the Huffman states for the lit/length values
|
|
// and the distance values, respectively. If hd == nil, using the
|
|
// fixed distance encoding associated with fixed Huffman blocks.
|
|
func (f *decompressor) huffmanBytesReader() {
|
|
const (
|
|
stateInit = iota // Zero value must be stateInit
|
|
stateDict
|
|
)
|
|
fr := f.r.(*bytes.Reader)
|
|
|
|
switch f.stepState {
|
|
case stateInit:
|
|
goto readLiteral
|
|
case stateDict:
|
|
goto copyHistory
|
|
}
|
|
|
|
readLiteral:
|
|
// Read literal and/or (length, distance) according to RFC section 3.2.3.
|
|
{
|
|
var v int
|
|
{
|
|
// Inlined v, err := f.huffSym(f.hl)
|
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
|
|
// with single element, huffSym must error on these two edge cases. In both
|
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it
|
|
// satisfy the n == 0 check below.
|
|
n := uint(f.hl.maxRead)
|
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
|
|
// but is smart enough to keep local variables in registers, so use nb and b,
|
|
// inline call to moreBits and reassign b,nb back to f on return.
|
|
nb, b := f.nb, f.b
|
|
for {
|
|
for nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
f.b = b
|
|
f.nb = nb
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
f.roffset++
|
|
b |= uint32(c) << (nb & regSizeMaskUint32)
|
|
nb += 8
|
|
}
|
|
chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
|
|
n = uint(chunk & huffmanCountMask)
|
|
if n > huffmanChunkBits {
|
|
chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
|
|
n = uint(chunk & huffmanCountMask)
|
|
}
|
|
if n <= nb {
|
|
if n == 0 {
|
|
f.b = b
|
|
f.nb = nb
|
|
if debugDecode {
|
|
fmt.Println("huffsym: n==0")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
f.b = b >> (n & regSizeMaskUint32)
|
|
f.nb = nb - n
|
|
v = int(chunk >> huffmanValueShift)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
var length int
|
|
switch {
|
|
case v < 256:
|
|
f.dict.writeByte(byte(v))
|
|
if f.dict.availWrite() == 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.step = (*decompressor).huffmanBytesReader
|
|
f.stepState = stateInit
|
|
return
|
|
}
|
|
goto readLiteral
|
|
case v == 256:
|
|
f.finishBlock()
|
|
return
|
|
// otherwise, reference to older data
|
|
case v < 265:
|
|
length = v - (257 - 3)
|
|
case v < maxNumLit:
|
|
val := decCodeToLen[(v - 257)]
|
|
length = int(val.length) + 3
|
|
n := uint(val.extra)
|
|
for f.nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits n>0:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
length += int(f.b & uint32(1<<(n®SizeMaskUint32)-1))
|
|
f.b >>= n & regSizeMaskUint32
|
|
f.nb -= n
|
|
default:
|
|
if debugDecode {
|
|
fmt.Println(v, ">= maxNumLit")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
var dist uint32
|
|
if f.hd == nil {
|
|
for f.nb < 5 {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits f.nb<5:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
dist = uint32(bits.Reverse8(uint8(f.b & 0x1F << 3)))
|
|
f.b >>= 5
|
|
f.nb -= 5
|
|
} else {
|
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
|
|
// with single element, huffSym must error on these two edge cases. In both
|
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it
|
|
// satisfy the n == 0 check below.
|
|
n := uint(f.hd.maxRead)
|
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
|
|
// but is smart enough to keep local variables in registers, so use nb and b,
|
|
// inline call to moreBits and reassign b,nb back to f on return.
|
|
nb, b := f.nb, f.b
|
|
for {
|
|
for nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
f.b = b
|
|
f.nb = nb
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
f.roffset++
|
|
b |= uint32(c) << (nb & regSizeMaskUint32)
|
|
nb += 8
|
|
}
|
|
chunk := f.hd.chunks[b&(huffmanNumChunks-1)]
|
|
n = uint(chunk & huffmanCountMask)
|
|
if n > huffmanChunkBits {
|
|
chunk = f.hd.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hd.linkMask]
|
|
n = uint(chunk & huffmanCountMask)
|
|
}
|
|
if n <= nb {
|
|
if n == 0 {
|
|
f.b = b
|
|
f.nb = nb
|
|
if debugDecode {
|
|
fmt.Println("huffsym: n==0")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
f.b = b >> (n & regSizeMaskUint32)
|
|
f.nb = nb - n
|
|
dist = uint32(chunk >> huffmanValueShift)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
switch {
|
|
case dist < 4:
|
|
dist++
|
|
case dist < maxNumDist:
|
|
nb := uint(dist-2) >> 1
|
|
// have 1 bit in bottom of dist, need nb more.
|
|
extra := (dist & 1) << (nb & regSizeMaskUint32)
|
|
for f.nb < nb {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits f.nb<nb:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
extra |= f.b & uint32(1<<(nb®SizeMaskUint32)-1)
|
|
f.b >>= nb & regSizeMaskUint32
|
|
f.nb -= nb
|
|
dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra
|
|
default:
|
|
if debugDecode {
|
|
fmt.Println("dist too big:", dist, maxNumDist)
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
// No check on length; encoding can be prescient.
|
|
if dist > uint32(f.dict.histSize()) {
|
|
if debugDecode {
|
|
fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
f.copyLen, f.copyDist = length, int(dist)
|
|
goto copyHistory
|
|
}
|
|
|
|
copyHistory:
|
|
// Perform a backwards copy according to RFC section 3.2.3.
|
|
{
|
|
cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
|
|
if cnt == 0 {
|
|
cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
|
|
}
|
|
f.copyLen -= cnt
|
|
|
|
if f.dict.availWrite() == 0 || f.copyLen > 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.step = (*decompressor).huffmanBytesReader // We need to continue this work
|
|
f.stepState = stateDict
|
|
return
|
|
}
|
|
goto readLiteral
|
|
}
|
|
}
|
|
|
|
// Decode a single Huffman block from f.
|
|
// hl and hd are the Huffman states for the lit/length values
|
|
// and the distance values, respectively. If hd == nil, using the
|
|
// fixed distance encoding associated with fixed Huffman blocks.
|
|
func (f *decompressor) huffmanBufioReader() {
|
|
const (
|
|
stateInit = iota // Zero value must be stateInit
|
|
stateDict
|
|
)
|
|
fr := f.r.(*bufio.Reader)
|
|
|
|
switch f.stepState {
|
|
case stateInit:
|
|
goto readLiteral
|
|
case stateDict:
|
|
goto copyHistory
|
|
}
|
|
|
|
readLiteral:
|
|
// Read literal and/or (length, distance) according to RFC section 3.2.3.
|
|
{
|
|
var v int
|
|
{
|
|
// Inlined v, err := f.huffSym(f.hl)
|
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
|
|
// with single element, huffSym must error on these two edge cases. In both
|
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it
|
|
// satisfy the n == 0 check below.
|
|
n := uint(f.hl.maxRead)
|
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
|
|
// but is smart enough to keep local variables in registers, so use nb and b,
|
|
// inline call to moreBits and reassign b,nb back to f on return.
|
|
nb, b := f.nb, f.b
|
|
for {
|
|
for nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
f.b = b
|
|
f.nb = nb
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
f.roffset++
|
|
b |= uint32(c) << (nb & regSizeMaskUint32)
|
|
nb += 8
|
|
}
|
|
chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
|
|
n = uint(chunk & huffmanCountMask)
|
|
if n > huffmanChunkBits {
|
|
chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
|
|
n = uint(chunk & huffmanCountMask)
|
|
}
|
|
if n <= nb {
|
|
if n == 0 {
|
|
f.b = b
|
|
f.nb = nb
|
|
if debugDecode {
|
|
fmt.Println("huffsym: n==0")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
f.b = b >> (n & regSizeMaskUint32)
|
|
f.nb = nb - n
|
|
v = int(chunk >> huffmanValueShift)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
var length int
|
|
switch {
|
|
case v < 256:
|
|
f.dict.writeByte(byte(v))
|
|
if f.dict.availWrite() == 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.step = (*decompressor).huffmanBufioReader
|
|
f.stepState = stateInit
|
|
return
|
|
}
|
|
goto readLiteral
|
|
case v == 256:
|
|
f.finishBlock()
|
|
return
|
|
// otherwise, reference to older data
|
|
case v < 265:
|
|
length = v - (257 - 3)
|
|
case v < maxNumLit:
|
|
val := decCodeToLen[(v - 257)]
|
|
length = int(val.length) + 3
|
|
n := uint(val.extra)
|
|
for f.nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits n>0:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
length += int(f.b & uint32(1<<(n®SizeMaskUint32)-1))
|
|
f.b >>= n & regSizeMaskUint32
|
|
f.nb -= n
|
|
default:
|
|
if debugDecode {
|
|
fmt.Println(v, ">= maxNumLit")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
var dist uint32
|
|
if f.hd == nil {
|
|
for f.nb < 5 {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits f.nb<5:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
dist = uint32(bits.Reverse8(uint8(f.b & 0x1F << 3)))
|
|
f.b >>= 5
|
|
f.nb -= 5
|
|
} else {
|
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
|
|
// with single element, huffSym must error on these two edge cases. In both
|
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it
|
|
// satisfy the n == 0 check below.
|
|
n := uint(f.hd.maxRead)
|
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
|
|
// but is smart enough to keep local variables in registers, so use nb and b,
|
|
// inline call to moreBits and reassign b,nb back to f on return.
|
|
nb, b := f.nb, f.b
|
|
for {
|
|
for nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
f.b = b
|
|
f.nb = nb
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
f.roffset++
|
|
b |= uint32(c) << (nb & regSizeMaskUint32)
|
|
nb += 8
|
|
}
|
|
chunk := f.hd.chunks[b&(huffmanNumChunks-1)]
|
|
n = uint(chunk & huffmanCountMask)
|
|
if n > huffmanChunkBits {
|
|
chunk = f.hd.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hd.linkMask]
|
|
n = uint(chunk & huffmanCountMask)
|
|
}
|
|
if n <= nb {
|
|
if n == 0 {
|
|
f.b = b
|
|
f.nb = nb
|
|
if debugDecode {
|
|
fmt.Println("huffsym: n==0")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
f.b = b >> (n & regSizeMaskUint32)
|
|
f.nb = nb - n
|
|
dist = uint32(chunk >> huffmanValueShift)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
switch {
|
|
case dist < 4:
|
|
dist++
|
|
case dist < maxNumDist:
|
|
nb := uint(dist-2) >> 1
|
|
// have 1 bit in bottom of dist, need nb more.
|
|
extra := (dist & 1) << (nb & regSizeMaskUint32)
|
|
for f.nb < nb {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits f.nb<nb:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
extra |= f.b & uint32(1<<(nb®SizeMaskUint32)-1)
|
|
f.b >>= nb & regSizeMaskUint32
|
|
f.nb -= nb
|
|
dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra
|
|
default:
|
|
if debugDecode {
|
|
fmt.Println("dist too big:", dist, maxNumDist)
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
// No check on length; encoding can be prescient.
|
|
if dist > uint32(f.dict.histSize()) {
|
|
if debugDecode {
|
|
fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
f.copyLen, f.copyDist = length, int(dist)
|
|
goto copyHistory
|
|
}
|
|
|
|
copyHistory:
|
|
// Perform a backwards copy according to RFC section 3.2.3.
|
|
{
|
|
cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
|
|
if cnt == 0 {
|
|
cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
|
|
}
|
|
f.copyLen -= cnt
|
|
|
|
if f.dict.availWrite() == 0 || f.copyLen > 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.step = (*decompressor).huffmanBufioReader // We need to continue this work
|
|
f.stepState = stateDict
|
|
return
|
|
}
|
|
goto readLiteral
|
|
}
|
|
}
|
|
|
|
// Decode a single Huffman block from f.
|
|
// hl and hd are the Huffman states for the lit/length values
|
|
// and the distance values, respectively. If hd == nil, using the
|
|
// fixed distance encoding associated with fixed Huffman blocks.
|
|
func (f *decompressor) huffmanStringsReader() {
|
|
const (
|
|
stateInit = iota // Zero value must be stateInit
|
|
stateDict
|
|
)
|
|
fr := f.r.(*strings.Reader)
|
|
|
|
switch f.stepState {
|
|
case stateInit:
|
|
goto readLiteral
|
|
case stateDict:
|
|
goto copyHistory
|
|
}
|
|
|
|
readLiteral:
|
|
// Read literal and/or (length, distance) according to RFC section 3.2.3.
|
|
{
|
|
var v int
|
|
{
|
|
// Inlined v, err := f.huffSym(f.hl)
|
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
|
|
// with single element, huffSym must error on these two edge cases. In both
|
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it
|
|
// satisfy the n == 0 check below.
|
|
n := uint(f.hl.maxRead)
|
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
|
|
// but is smart enough to keep local variables in registers, so use nb and b,
|
|
// inline call to moreBits and reassign b,nb back to f on return.
|
|
nb, b := f.nb, f.b
|
|
for {
|
|
for nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
f.b = b
|
|
f.nb = nb
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
f.roffset++
|
|
b |= uint32(c) << (nb & regSizeMaskUint32)
|
|
nb += 8
|
|
}
|
|
chunk := f.hl.chunks[b&(huffmanNumChunks-1)]
|
|
n = uint(chunk & huffmanCountMask)
|
|
if n > huffmanChunkBits {
|
|
chunk = f.hl.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hl.linkMask]
|
|
n = uint(chunk & huffmanCountMask)
|
|
}
|
|
if n <= nb {
|
|
if n == 0 {
|
|
f.b = b
|
|
f.nb = nb
|
|
if debugDecode {
|
|
fmt.Println("huffsym: n==0")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
f.b = b >> (n & regSizeMaskUint32)
|
|
f.nb = nb - n
|
|
v = int(chunk >> huffmanValueShift)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
var length int
|
|
switch {
|
|
case v < 256:
|
|
f.dict.writeByte(byte(v))
|
|
if f.dict.availWrite() == 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.step = (*decompressor).huffmanStringsReader
|
|
f.stepState = stateInit
|
|
return
|
|
}
|
|
goto readLiteral
|
|
case v == 256:
|
|
f.finishBlock()
|
|
return
|
|
// otherwise, reference to older data
|
|
case v < 265:
|
|
length = v - (257 - 3)
|
|
case v < maxNumLit:
|
|
val := decCodeToLen[(v - 257)]
|
|
length = int(val.length) + 3
|
|
n := uint(val.extra)
|
|
for f.nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits n>0:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
length += int(f.b & uint32(1<<(n®SizeMaskUint32)-1))
|
|
f.b >>= n & regSizeMaskUint32
|
|
f.nb -= n
|
|
default:
|
|
if debugDecode {
|
|
fmt.Println(v, ">= maxNumLit")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
var dist uint32
|
|
if f.hd == nil {
|
|
for f.nb < 5 {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits f.nb<5:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
dist = uint32(bits.Reverse8(uint8(f.b & 0x1F << 3)))
|
|
f.b >>= 5
|
|
f.nb -= 5
|
|
} else {
|
|
// Since a huffmanDecoder can be empty or be composed of a degenerate tree
|
|
// with single element, huffSym must error on these two edge cases. In both
|
|
// cases, the chunks slice will be 0 for the invalid sequence, leading it
|
|
// satisfy the n == 0 check below.
|
|
n := uint(f.hd.maxRead)
|
|
// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
|
|
// but is smart enough to keep local variables in registers, so use nb and b,
|
|
// inline call to moreBits and reassign b,nb back to f on return.
|
|
nb, b := f.nb, f.b
|
|
for {
|
|
for nb < n {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
f.b = b
|
|
f.nb = nb
|
|
f.err = noEOF(err)
|
|
return
|
|
}
|
|
f.roffset++
|
|
b |= uint32(c) << (nb & regSizeMaskUint32)
|
|
nb += 8
|
|
}
|
|
chunk := f.hd.chunks[b&(huffmanNumChunks-1)]
|
|
n = uint(chunk & huffmanCountMask)
|
|
if n > huffmanChunkBits {
|
|
chunk = f.hd.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&f.hd.linkMask]
|
|
n = uint(chunk & huffmanCountMask)
|
|
}
|
|
if n <= nb {
|
|
if n == 0 {
|
|
f.b = b
|
|
f.nb = nb
|
|
if debugDecode {
|
|
fmt.Println("huffsym: n==0")
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
f.b = b >> (n & regSizeMaskUint32)
|
|
f.nb = nb - n
|
|
dist = uint32(chunk >> huffmanValueShift)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
switch {
|
|
case dist < 4:
|
|
dist++
|
|
case dist < maxNumDist:
|
|
nb := uint(dist-2) >> 1
|
|
// have 1 bit in bottom of dist, need nb more.
|
|
extra := (dist & 1) << (nb & regSizeMaskUint32)
|
|
for f.nb < nb {
|
|
c, err := fr.ReadByte()
|
|
if err != nil {
|
|
if debugDecode {
|
|
fmt.Println("morebits f.nb<nb:", err)
|
|
}
|
|
f.err = err
|
|
return
|
|
}
|
|
f.roffset++
|
|
f.b |= uint32(c) << f.nb
|
|
f.nb += 8
|
|
}
|
|
extra |= f.b & uint32(1<<(nb®SizeMaskUint32)-1)
|
|
f.b >>= nb & regSizeMaskUint32
|
|
f.nb -= nb
|
|
dist = 1<<((nb+1)®SizeMaskUint32) + 1 + extra
|
|
default:
|
|
if debugDecode {
|
|
fmt.Println("dist too big:", dist, maxNumDist)
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
// No check on length; encoding can be prescient.
|
|
if dist > uint32(f.dict.histSize()) {
|
|
if debugDecode {
|
|
fmt.Println("dist > f.dict.histSize():", dist, f.dict.histSize())
|
|
}
|
|
f.err = CorruptInputError(f.roffset)
|
|
return
|
|
}
|
|
|
|
f.copyLen, f.copyDist = length, int(dist)
|
|
goto copyHistory
|
|
}
|
|
|
|
copyHistory:
|
|
// Perform a backwards copy according to RFC section 3.2.3.
|
|
{
|
|
cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
|
|
if cnt == 0 {
|
|
cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
|
|
}
|
|
f.copyLen -= cnt
|
|
|
|
if f.dict.availWrite() == 0 || f.copyLen > 0 {
|
|
f.toRead = f.dict.readFlush()
|
|
f.step = (*decompressor).huffmanStringsReader // We need to continue this work
|
|
f.stepState = stateDict
|
|
return
|
|
}
|
|
goto readLiteral
|
|
}
|
|
}
|
|
|
|
func (f *decompressor) huffmanBlockDecoder() func() {
|
|
switch f.r.(type) {
|
|
case *bytes.Buffer:
|
|
return f.huffmanBytesBuffer
|
|
case *bytes.Reader:
|
|
return f.huffmanBytesReader
|
|
case *bufio.Reader:
|
|
return f.huffmanBufioReader
|
|
case *strings.Reader:
|
|
return f.huffmanStringsReader
|
|
default:
|
|
return f.huffmanBlockGeneric
|
|
}
|
|
}
|